Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171977, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547969

RESUMO

Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou's evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38101762

RESUMO

Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid ß-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.


Assuntos
Golfinho Nariz-de-Garrafa , Peixes-Gato , Animais , Golfo do México , Carnitina , Baías , Golfinho Nariz-de-Garrafa/fisiologia , Biota , Biomarcadores , Ácidos Graxos
3.
J Phycol ; 58(6): 804-814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056600

RESUMO

Human alterations to the marine environment such as an oil spill can induce oxidative stress in phytoplankton. Exposure to oil has been shown to be lethal to most phytoplankton species, but some are able to survive and grow at unaffected or reduced growth rates, which appears to be independent of the class and phylum of the phytoplankton and their ability to consume components of oil heterotrophically. The goal of this article is to test the role of core metabolism plasticity in the oil-resisting ability of phytoplankton. Experiments were performed on the oil- resistant chlorophyte, Dunaliella tertiolecta, in control and water accommodated fractions of oil, with and without metabolic inhibitors targeting the core metabolic pathways. We observed that inhibiting pathways such as photosynthetic electron transport (PET) and pentose-phosphate pathway were lethal; however, inhibition of pathways such as mitochondrial electron transport and cyclic electron transport caused growth to be arrested. Pathways such as photorespiration and Kreb's cycle appear to play a critical role in the oil-tolerating ability of D. tertiolecta. Analysis of photo-physiology revealed reduced PET under inhibition of photorespiration but not Kreb's cycle. Further studies showed enhanced flux through Kreb's cycle suggesting increased energy production and photorespiration counteract oxidative stress. Lastly, reduced extracellular carbohydrate secretion under oil exposure indicated carbon and energy conservation, which together with enhanced flux through Kreb's cycle played a major role in the survival of D. tertiolecta under oil exposure by meeting the additional energy demands. Overall, we present data that suggest the role of phenotypic plasticity of multiple core metabolic pathways in accounting for the oxidative stress tolerating ability of certain phytoplankton species.


Assuntos
Clorofíceas , Poluição por Petróleo , Humanos , Fitoplâncton/fisiologia , Fotossíntese , Transporte de Elétrons
4.
ISME Commun ; 2(1): 81, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37938674

RESUMO

Estuaries provide many ecosystem services and host a majority of the world's population. Here, the response of microbial communities after a record-breaking flood event in a highly urbanized estuary was followed. Hurricane Harvey (hereafter Harvey) was a category 4 hurricane that made landfall on the Texas coast in 2017 and lashed the Houston area with 1.4-1.7 × 1010 m3 of rainfall, disrupting the natural gradients of nutrients and salinity. Here, we utilized metagenomics to analyze how Harvey altered the microbial community of Galveston Bay over five weeks following the storm. We hypothesized that the community would shift from a marine dominated community to that of a terrestrial and freshwater origin. We found that following the storm there were changes in the distribution of species with specific metabolic capacities, such as Cyanobacteria, enriched in oxygenic photosynthesis and nitrogen fixation genes, as well as Verrucomicrobia and Betaproteobacteria, with high prevalence of the SOX complex and anoxygenic photosynthesis genes. On the other hand, dominant members of the community with more diverse metabolic capabilities showed less fluctuations in their distribution. Our results highlight how massive precipitation disturbances can alter microbial communities and how the coalescence of diverse microorganisms creates a resilient community able to maintain ecosystem services even when the system is in an altered state.

5.
Sci Total Environ ; 805: 150361, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818778

RESUMO

The use of aqueous film forming foams (AFFFs) as fire retardants is an critical point-source for per- and polyfluoroalkyl substances (PFASs) pollution into the aquatic environment. This study investigated PFASs pollution in the surface waters and biota (shellfish and fish) of Galveston Bay, following AFFFs use to extinguish a petrochemical fire (March 17th to 20th, 2019) of oil storage tanks at the International Terminals Company (ITC) in Deer Park (Houston, TX). The levels of up to twelve EPA priority PFASs were measured in surface waters and biota from March-November 2019. PFASs levels in surface waters showed mean total levels in March and April 2019 to be from 4× to ~300× higher than those measured in the following months. PFOS (perfluorooctanesulfonic acid) was the most abundant homolog measured at ≥66% of total PFASs. Maximal PFOS levels exceeded the State of Texas' water regulatory limit of 0.6 µg L-1 in 3% of the samples analyzed in March and April 2019. PFOS was also the most prominent homolog (≥66% of total PFASs) measured in eastern oysters (Crassostrea virginica), red drum (Sciaenops ocellatus), gafftopsail catfish (Bagre marinus), and spotted seatrout (Cynoscion nebulosus). A statistically significant elevation of PFOS body-burdens was measured in oysters and spotted seatrout in April and May 2019, respectively. A Hazard Ratio calculation for seafood safety suggests an advisory of 1-2 meals per week for gafftopsail catfish and red drum, and 2 meals per week for spotted seatrout to be protective for human exposure to PFOS. The levels in oysters indicated no immediate concerns for the dietary exposure of humans. Our results highlight a need for continual monitoring to assess the long-term fate and seafood advisories for PFASs.


Assuntos
Ácidos Alcanossulfônicos , Cervos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Baías , Biota , Fluorocarbonos/análise , Humanos , Alimentos Marinhos , Frutos do Mar , Água , Poluentes Químicos da Água/análise
6.
PLoS One ; 16(12): e0259506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34851969

RESUMO

Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and-N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the-N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in-N-Si and-N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.


Assuntos
Diatomáceas/metabolismo , Óleos Combustíveis/toxicidade , Poluentes da Água/toxicidade , Clorofila/metabolismo , Diatomáceas/efeitos dos fármacos , Nitrogênio/metabolismo , Fotossíntese , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Dióxido de Silício/metabolismo
7.
Sci Rep ; 11(1): 19831, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615889

RESUMO

The 2010 Deepwater Horizon oil-spill exposed the microbes of Gulf of Mexico to unprecedented amount of oil. Conclusive evidence of the underlying molecular mechanism(s) on the negative effects of oil exposure on certain phytoplankton species such as Thalassiosira pseudonana is still lacking, curtailing our understanding of how oil spills alter community composition. We performed experiments on model diatom T. pseudonana to understand the mechanisms underpinning observed reduced growth and photosynthesis rates during oil exposure. Results show severe impairment to processes upstream of photosynthesis, such as light absorption, with proteins associated with the light harvesting complex damaged while the pigments were unaffected. Proteins associated with photosynthetic electron transport were also damaged, severely affecting photosynthetic apparatus and depriving cells of energy and carbon for growth. Negative growth effects were alleviated when an organic carbon source was provided. Further investigation through proteomics combined with pathway enrichment analysis confirmed the above findings, while highlighting other negatively affected processes such as those associated with ferroxidase complex, high-affinity iron-permease complex, and multiple transmembrane transport. We also show that oxidative stress is not the primary route of negative effects, rather secondary. Overall, this study provides a mechanistic understanding of the cellular damage that occurs during oil exposure to T. pseudonana.


Assuntos
Biocombustíveis/efeitos adversos , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Poluição por Petróleo/efeitos adversos , Biomarcadores , Diatomáceas/metabolismo , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos
8.
mSystems ; 6(5): e0110521, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34609162

RESUMO

Following oil spills in aquatic environments, oil-associated flocculants observed within contaminated waters ultimately lead to the sedimentation of oil as marine oil snow (MOS). To better understand the role of aggregates in hydrocarbon degradation and transport, we experimentally produced a MOS sedimentation event using Gulf of Mexico coastal waters amended with oil or oil plus dispersant. In addition to the formation of MOS, smaller micrometer-scale (10- to 150-µm) microbial aggregates were observed. Visual inspection of these microaggregates revealed that they were most abundant in the oil-amended treatments and frequently associated with oil droplets, linking their formation to the presence of oil. The peak abundance of the microaggregates coincided with the maximum rates of biological hydrocarbon oxidation estimated by the mineralization of 14C-labeled hexadecane and naphthalene. To elucidate the potential of microaggregates to serve as hot spots for hydrocarbon degradation, we characterized the free-living and aggregate-associated microbial assemblages using 16S rRNA gene sequencing. The microaggregate population was found to be bacterially dominated and enriched with putative hydrocarbon-degrading taxa. Direct observation of some of these taxa using catalyzed reporter deposition fluorescence in situ hybridization confirmed their greater abundance within microaggregates relative to the surrounding seawater. Metagenomic sequencing of these bacteria-oil microaggregates (BOMAs) further supported their community's capacity to utilize a wide variety of hydrocarbon compounds. Taken together, these data highlight that BOMAs are inherent features in the biological response to oil spills and likely important hot spots for hydrocarbon oxidation in the ocean. IMPORTANCE Vast quantities of oil-associated marine snow (MOS) formed in the water column as part of the natural biological response to the Deepwater Horizon drilling accident. Despite the scale of the event, uncertainty remains about the mechanisms controlling MOS formation and its impact on the environment. In addition to MOS, we observed micrometer-scale (10- to 150-µm) aggregates whose abundance coincided with maximum rates of hydrocarbon degradation and whose composition was dominated by hydrocarbon-degrading bacteria with the genetic potential to metabolize a range of these compounds. This targeted study examining the role of these bacteria-oil microaggregates in hydrocarbon degradation reveals details of this fundamental component of the biological response to oil spills, and with it, alterations to biogeochemical cycling in the ocean.

9.
Gels ; 7(3)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34449609

RESUMO

Marine gels (nano-, micro-, macro-) and marine snow play important roles in regulating global and basin-scale ocean biogeochemical cycling. Exopolymeric substances (EPS) including transparent exopolymer particles (TEP) that form from nano-gel precursors are abundant materials in the ocean, accounting for an estimated 700 Gt of carbon in seawater. This supports local microbial communities that play a critical role in the cycling of carbon and other macro- and micro-elements in the ocean. Recent studies have furthered our understanding of the formation and properties of these materials, but the relationship between the microbial polymers released into the ocean and marine snow remains unclear. Recent studies suggest developing a (relatively) simple model that is tractable and related to the available data will enable us to step forward into new research by following marine snow formation under different conditions. In this review, we synthesize the chemical and physical processes. We emphasize where these connections may lead to a predictive, mechanistic understanding of the role of gels in marine snow formation and the biogeochemical functioning of the ocean.

10.
Front Microbiol ; 12: 675328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408728

RESUMO

Microbial interactions influence nearly one-half of the global biogeochemical flux of major elements of the marine ecosystem. Despite their ecological importance, microbial interactions remain poorly understood and even less is known regarding the effects of anthropogenic perturbations on these microbial interactions. The Deepwater Horizon oil spill exposed the Gulf of Mexico to ∼4.9 million barrels of crude oil over 87 days. We determined the effects of oil exposure on microbial interactions using short- and long-term microcosm experiments with and without Macondo surrogate oil. Microbial activity determined using radiotracers revealed that oil exposure negatively affected substrate uptake by prokaryotes within 8 h and by eukaryotes over 72 h. Eukaryotic uptake of heterotrophic exopolymeric substances (EPS) was more severely affected than prokaryotic uptake of phototrophic EPS. In addition, our long-term exposure study showed severe effects on photosynthetic activity. Lastly, changes in microbial relative abundances and fewer co-occurrences among microbial species were mostly driven by photosynthetic activity, treatment (control vs. oil), and prokaryotic heterotrophic metabolism. Overall, oil exposure affected microbial co-occurrence and/or interactions possibly by direct reduction in abundance of one of the interacting community members and/or indirect by reduction in metabolism (substrate uptake or photosynthesis) of interacting members.

11.
Environ Pollut ; 288: 117774, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274645

RESUMO

Dispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress. In contrast, a chemically dispersed oil treatment stimulated eukaryotic genes and pathways consistent with nitrogen and oxygen depletion. These results suggest that the addition of dispersant may elevate bacterial biodegradation of crude oil, indirectly increasing competition for nitrogen between prokaryotic and eukaryotic communities as oxygen consumption induces bacterial anaerobic respiration and denitrification. Eukaryotic microbial communities may mitigate some of the negative effects of oil exposure such as reduced photosynthesis and elevated oxidative stress, through ketosis, but the addition of dispersant to the oil fundamentally alters the environmental and ecological conditions and therefore the biochemical response of the eukaryotic community.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Eucariotos , Petróleo/toxicidade , Poluição por Petróleo/análise , Água do Mar , Tensoativos , Transcriptoma , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Gels ; 7(3)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287300

RESUMO

Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air-sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.

13.
Mar Pollut Bull ; 165: 112025, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33571788

RESUMO

Marine snow formation and vertical transport are naturally occurring processes that carry organic matter from the surface to deeper waters, providing food and sequestering carbon. During the Deepwater Horizon well blowout, oil was incorporated with marine snow aggregates, triggering a Marine Oil Snow (MOS) Sedimentation and Flocculent Accumulation (MOSSFA) event, that transferred a significant percentage of the total released oil to the seafloor. An improved understanding of processes controlling MOS formation and MOSSFA events is necessary for evaluating their impacts on the fate of spilled oil. Numerical models and predictive tools capable of providing scientific support for oil spill planning, response, and Natural Resource Damage Assessment are being developed to provide information for weighing the ecological trade-offs of response options. Here we offer considerations for oil spill response and recovery when assessing the potential for a MOSSFA event and provide tools to enhance decision-making.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Carbono , Sedimentos Geológicos , Golfo do México , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise
14.
Mar Pollut Bull ; 164: 112074, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33540275

RESUMO

The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems. As such, alterations of the phytoplankton community propagate to upper trophic levels. This review brings together new insights into the influence of oil and dispersant on phytoplankton. We bring together laboratory, mesocosm and field experiments, including insights into novel observations of harmful algal bloom (HAB) forming species and zooplankton as well as bacteria-phytoplankton interactions. We finish by addressing knowledge gaps and highlighting key topics for research in novel areas.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Animais , Ecossistema , Golfo do México , Fitoplâncton , Poluentes Químicos da Água/toxicidade
15.
Mar Policy ; 131: 1-18, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37850151

RESUMO

Although great progress has been made to advance the scientific understanding of oil spills, tools for integrated assessment modeling of the long-term impacts on ecosystems, socioeconomics and human health are lacking. The objective of this study was to develop a conceptual framework that could be used to answer stakeholder questions about oil spill impacts and to identify knowledge gaps and future integration priorities. The framework was initially separated into four knowledge domains (ocean environment, biological ecosystems, socioeconomics, and human health) whose interactions were explored by gathering stakeholder questions through public engagement, assimilating expert input about existing models, and consolidating information through a system dynamics approach. This synthesis resulted in a causal loop diagram from which the interconnectivity of the system could be visualized. Results of this analysis indicate that the system naturally separates into two tiers, ocean environment and biological ecosystems versus socioeconomics and human health. As a result, ocean environment and ecosystem models could be used to provide input to explore human health and socioeconomic variables in hypothetical scenarios. At decadal-plus time scales, the analysis emphasized that human domains influence the natural domains through changes in oil-spill related laws and regulations. Although data gaps were identified in all four model domains, the socioeconomics and human health domains are the least established. Considerable future work is needed to address research gaps and to create fully coupled quantitative integrative assessment models that can be used in strategic decision-making that will optimize recoveries from future large oil spills.

16.
Sci Total Environ ; 757: 143766, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33243507

RESUMO

Organic particle dynamics in the surface ocean plays a critical part in the marine carbon cycle. Aggregation of marine organic particles drives their downward transport to support various marine organisms on their transit to the sediments. Extracellular polymeric substances (EPS) from various microbes are a major contributor to the oceanic organic particle pool. The stickiness of EPS is expected to play a determining role in the aggregation process of particles; however, stickiness parameters are usually indirectly estimated through data fitting without direct assessment. Here a magnetic tweezer method was developed to quantitatively assess the stickiness of three model EPS produced by: Amphora sp., (diatom), Emiliania huxleyi (coccolithophore), and Sagittula stellata (bacteria), under different in vitro environmental conditions (salinity or EDTA complexed cations) and surface matrices (EPS-EPS and bare glass). Our results showed the stickiness of three microbial EPS decreasing for S. stellata > E. huxleyi > Amphora sp., in line with their decreasing protein-to-carbohydrate (P/C) ratios (related to their relative hydrophobicity). The data not only emphasize the importance of hydrophobicity on EPS stickiness, but also demonstrates that salinity and the nature of the substrate surface can influence the stickiness. Furthermore, we investigated stickiness between various types of EPS, and the observed selective stickiness of EPS between species may shed light on the interactions among heterogeneous marine microorganisms. Overall, this newly developed system provides a platform to assess the EPS stickiness to advance our understanding of the aggregation and sedimentation process of organic particles that are critical for the fate of organic carbon as well as for biofilm formation and microbial colonization of surfaces in the ocean.


Assuntos
Diatomáceas , Rhodobacteraceae , Matriz Extracelular de Substâncias Poliméricas , Fenômenos Magnéticos
17.
PLoS One ; 15(12): e0243734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370322

RESUMO

The cycling and fate of polycyclic aromatic hydrocarbons (PAHs) is not well understood in estuarine systems. It is critical now more than ever given the increased ecosystem pressures on these critical coastal habitats. A budget of PAHs and cycling has been created for Galveston Bay (Texas) in the northwestern Gulf of Mexico, an estuary surrounded by 30-50% of the US capacity of oil refineries and chemical industry. We estimate that approximately 3 to 4 mt per year of pyrogenic PAHs are introduced to Galveston Bay via gaseous exchange from the atmosphere (ca. 2 mt/year) in addition to numerous spills of petrogenic PAHs from oil and gas operations (ca. 1.0 to 1.9 mt/year). PAHs are cycled through and stored in the biota, and ca. 20 to 30% of the total (0.8 to 1.5 mt per year) are estimated to be buried in the sediments. Oysters concentrate PAHs to levels above their surroundings (water and sediments) and contain substantially greater concentrations than other fish catch (shrimp, blue crabs and fin fish). Smaller organisms (infaunal invertebrates, phytoplankton and zooplankton) might also retain a significant fraction of the total, but direct evidence for this is lacking. The amount of PAHs delivered to humans in seafood, based on reported landings, is trivially small compared to the total inputs, sediment accumulation and other possible fates (metabolic remineralization, export in tides, etc.), which remain poorly known. The generally higher concentrations in biota from Galveston Bay compared to other coastal habitats can be attributed to both intermittent spills of gas and oil and the bay's close proximity to high production of pyrogenic PAHs within the urban industrial complex of the city of Houston as well as periodic flood events that transport PAHs from land surfaces to the Bay.


Assuntos
Baías/química , Monitoramento Ambiental/estatística & dados numéricos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Atmosfera/química , Braquiúros/química , Braquiúros/metabolismo , Peixes/metabolismo , Sedimentos Geológicos/química , Golfo do México , Ostreidae/química , Ostreidae/metabolismo , Poluição por Petróleo/estatística & dados numéricos , Texas , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 748: 141469, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113698

RESUMO

The substantial increase in plastic pollution in marine ecosystems raises concerns about its adverse impacts on the microbial community. Microorganisms (bacteria, phytoplankton) are important producers of exopolymeric substances (EPS), which govern the processes of marine organic aggregate formation, microbial colonization, and pollutant mobility. Until now, the effects of nano- and micro-plastics on characteristics of EPS composition have received little attention. This study investigated EPS secretion by four phytoplankton species following exposure to various concentrations of polystyrene nano- and microplastics (55 nm nanoparticles; 1 and 6 µm microparticles). The 55 nm nanoparticles induced less growth/survival (determined on a DNA basis) and produced EPS with higher protein-to-carbohydrate (P/C) ratios than the exposure to microplastic particles. The amount of DNA from the four marine phytoplankton showed a higher negative linear correlation with increasing P/C ratios, especially in response to nanoplastic exposure. These results provide evidence that marine phytoplankton are quite sensitive to smaller-sized plastics and actively modify their EPS chemical composition to cope with the stress from pollution. Furthermore, the release of protein-rich EPS was found to facilitate aggregate formation and surface modification of plastic particles, thereby affecting their fate and colonization. Overall, this work offers new insights into the potential harm of different-sized plastic particles and a better understanding of the responding mechanism of marine phytoplankton for plastic pollution. The data also provide needed information about the fate of marine plastics and biogenic aggregation and scavenging processes.


Assuntos
Fitoplâncton , Poluentes Químicos da Água , Ecossistema , Matriz Extracelular de Substâncias Poliméricas , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
mSystems ; 5(4)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843540

RESUMO

Marine oil spills can impact both coastal and offshore marine environments, but little information is available on how the microbial response to oil and dispersants might differ between these biomes. Here, we describe the compositional and functional response of microbial communities to different concentrations of oil and chemically dispersed oil in coastal and offshore surface waters from the Texas-Louisiana continental shelf. Using a combination of analytical chemistry and 16S rRNA amplicon and metatranscriptomic sequencing, we provide a broad, comparative overview of the ecological response of hydrocarbon-degrading bacteria and their expression of hydrocarbon-degrading genes in marine surface waters over time between two oceanic biomes. We found evidence for the existence of different ecotypes of several commonly described hydrocarbon-degrading bacterial taxa which behaved differentially in coastal and offshore shelf waters despite being exposed to similar concentrations of oil, dispersants, and nutrients. This resulted in the differential expression of catabolic pathways for n-alkanes and polycyclic aromatic hydrocarbons (PAHs)-the two major categories of compounds found in crude oil-with preferential expression of n-alkane degradation genes in coastal waters while offshore microbial communities trended more toward the expression of PAH degradation genes. This was unexpected as it contrasts with the generally held view that n-alkanes, being more labile, are attacked before the more refractory PAHs. Collectively, our results provide new insights into the existence and potential consequences of niche partitioning of hydrocarbon-degrading taxa between neighboring marine environments.IMPORTANCE In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...